InSyBio Pipelines

March 2022

Insybio Suite v3.0

InSyBio Intelligent Systems Biology

User Manual

www.insybio.com

Insybio Pipelines

Introduction

Pipelines is a tool that provides an integrated optimized pipeline from raw data until the discovery of biosignatures, networks and predictive models. It takes as input a dataset file and after performing statistical and network analytics, it uses the dataset to train a machine learning model identifying at the same time the optimal biomarkers for the trained model.

To start the calculation:

Click in the menu "InSyBio Pipelines", select the "Add new job" button and then:

- Upload a new Biomarkers Dataset file with features as rows and samples as columns and a corresponding Biomarkers Labels file with all labels in one row, separated by tabs. You are redirected to the Data Store where step by step instructions guide you.
- Or Select a file from the Data Store. There you can find your previously uploaded files or InSyBio pre-uploaded sample datasets.

×	🔮 InSyBio Suite - Pipeline	Job		₿ @ #	InSyBio Beta User 🔻 💻 🕐
	InSyBio Interact				
	InSyBio ncRNASeq	< Dashboard			
	InSyBio Bionets				
	InSyBio Biomarkers	Main Inputs - Upload File Biomarkers Dataset 🛛	S		
	InSyBio DNA-Seq	Title 1:	healthy		
	InSyBio Pipelines	Filename 1:	dsfile1622716077_184.txt		
	InSyBio DataStore		Select file from Data Store Go to Data Store to Upload File		
		Phenotypic Annotation 🔞			
		Title 2:	softparse healthy labels		
		Filename 2:	dsfile1647516535_7558.txt		
			Select file from Data Store O Go to Data Store to Upload File		
		Does your dataset have samples he	aders? No 🗢		
		Does your dataset have features he	aders? No 🗢		
		Does the Normalization use a set o	householding molecules?		

After that the user will have to insert the information regarding the headers. That is to inform the application if the original dataset has sample headers or feature headers. Optionally, the user will have the option to insert the names of the features that will be used for normalization. The user should also select which Pipeline Steps he wants to be performed. There are six steps. All steps have pre-optimized parameters and steps for general purpose and pre-optimized parameters and steps for specific application domains that we use as defaults, but the user can configure these values manually. It is advised that the default values are used.

ipeline Steps	
Select preoptimized parameters:	
Default preoptimized parameters	÷
1. Preprocessing (Optional)	
2. Statistical Analysis	
3. General Predictive Model Creation	
4. Network Analysis (Optional)	
5. ncRNAseq Predict (Optional)	
6. Testing Multi-biomarker Predictive Analytics Model (Optional)	

Preprocessing

The first step is the Preprocessing. The user can select if preprocessing should be performed. During preprocessing we filter the dataset, perform normalization, missing values imputation, duplicate measurements averaging and outlier detection with the PCA LOF method.

1. Preprocessing (Optional)	1. Preprocessing (Optional)								
Do you want to do preprocessing? 🗹									
Normalization: Arithmetic Sample-Wise Normaliza	don 🗢								
Missing values imputation: KNN-impute \$									

More specifically, there are two kinds of normalization: arithmetic sample-wise and logarithmic. It should be noted that when the data contain negative numbers the arithmetic normalization should be chosen, since logarithmic normalization method functions only with non-negative data. If "None" is chosen, no normalization takes place.

There are two kinds of missing value imputation methods as well: average imputation and KNN imputation. Average imputation is a method in which the missing value on a certain variable is replaced by the mean of the available cases¹. On the other hand, the key idea of KNN imputation is that a point value can be approximated by the values of the points that are closest to it, based on other variables². The above missing values imputation methods are relevant only for cases where a missing value does not imply a quantification value of zero. In such cases, missing values should be replaced with zeros before uploading the dataset. If "None" is chosen then no missing value imputation takes place.

¹ <u>Single Imputation Methods</u> (iriseekhout.com)

² <u>The use of KNN for missing values</u> (towardsdatascience.com)

Furthermore, if a missing values imputation method is being chosen instead of "None", the duplicate measurements will be averaged.

To view the results:

By starting a calculation the Pipelines dashboard is updated with the submitted job. There you can view the status of your current and previous Pipelines calculations. At completion of the calculation you can select the View Details at the Actions column and view the results.

×	InSyBio Suite - Pipelines Di	ashboard					¢	a		InSyBio Be	eta User	•		?
	InSyBio Interact													-
	InSyBio ncRNASeq	🛟 Add new Job					Tilter Jobs	Show A		2	0		0	11
	InSyBio Bionets									Complete	ed Runni	ng Pen	ding E	Error
	InSyBio Biomarkers													
	InSvBio DNA-Seg	Status ↑↓	Job ID ↑↓ Input F	le(s) ↑↓	Submission Date	Start Execution Date	Completion Date	†↓ Cu	irrent S	Step		Actions		
		Completed	22		12/22/21 9:00 AM	1/19/22 7:15 PM	1/22/22 1:40 AM					View Re	sults	
	InSyBio Pipelines	Error	21		11/23/21 8:53 PM	11/23/21 8:53 PM	11/23/21 9:33 PM	Va	riant	Annotation		View De	tails	
	InSyBio DataStore	Error	20		11/23/21 4:28 PM	11/23/21 4:28 PM	11/23/21 4:28 PM	Ca	ll Var	riants		View De	tails	
		Error	19		11/23/21 12:38 PM	11/23/21 12:38 PM	11/23/21 1:20 PM	Ca	ll Var	riants		View De	tails	
		Error	18		11/23/21 11:36 AM	11/23/21 11:36 AM	11/23/21 11:36 AM	Ca	ll Var	riants		View De	tails	
		Error	17		11/21/21 11:21 PM	11/21/21 11:21 PM	11/23/21 10:18 AM	Va	riant	Annotation		View De	tails	
		Error	16		11/21/21 10:54 AM	11/21/21 10:54 AM	11/21/21 10:54 AM	Ca	ll Var	riants		View De	tails	
		Error	15		11/18/21 3:36 PM	11/19/21 11:35 AM	11/19/21 11:35 AM	Ca	ll Var	riants		View De	tails	
		Error	14		11/18/21 7:14 AM	11/19/21 2:42 PM	11/19/21 5:00 PM					View De	tails	
		Error	13		11/17/21 6:37 PM	11/17/21 6:37 PM	11/18/21 4:45 AM					View De	tails	

In the Preprocessing tab the user will be able to download the resulting preprocessed file.

Statistical Analysis

The second step is Statistical Analysis. This step is mandatory. At this step, Differential Expression Analysis, Heatmap construction and Spearman correlation table construction are performed.

Only variables annotated as genes/transcripts/proteins will be used for differential expression analysis. If a user has uploaded a phenotypic annotation file with more than two columns then multiple tasks will be created with one column of the phenotypic annotation per file. Every phenotypic column can take two or more values.

The user has to select the type of analysis to be made on the inserted dataset. There are two types of statistical analysis, paired and unpaired analysis.

Afterwards the user will have to insert the p-value threshold value, which is recommended to be 0.05.

Then, the user will choose the kind of test to be performed on the selected dataset: automatic, parametric Ebayes Test Selection, parametric 2-sided Students T-test (or One-way ANOVA Test Selection) or non-parametric Kruskal Wallis (or Mann Whitney Test Selection) test. If the automatic version is chosen, then our algorithm will decide which test to run: the parametric or non-parametric.

Preprocessing Full Predictive	Model Full Model Testing Statistical Analysis	Differential Expression Predictive Model Diffe	erential Expression Model Testing Network Analysis	Network-based Predictive Model
Network-based Model Testing	miRNA Target Prediction Enrichment Analysis			
Statistical Analysis Results He	eatmap Visualization Volcano Plots Visualization	Significant Molecules Dataset MQ Files E	leanplots Download All Results Download Run	Info
Statistical Analysis Results (Top	20*)			
*You can download the full results fr	om "All Results Download" tab.			
p-Values 0 VS 1 top20 p-Value	es 0 VS 2 top20 p-Values 1 VS 2 top20			
IDs	Pvalue	Adjusted Pvalue	Fold Change	
RNF212B	0.18741294693239047	0.5452433804609337	0.08475392968950879	
LOC100129198	0.9293637713589189	0.9785016692464833	0.006983114010646718	
PTPMT1	0.25870166874098305	0.6119673829551042	-0.09314611910088039	
FAM132A	0.37562148584900146	0.7011692112382196	-0.07741626791886391	
LOC157931	0.02927316214513881	0.27998063212706686	0.15770781008409007	
SLC7A11-AS1	0.11107623773055629	0.45178433846415594	-0.12683162544288085	
SIGLEC15	0.869474054318045	0.9561845021784103	0.009908001816207268	
BE327079	0.211841319811446	0.569855370076092	-0.11498243147699527	
BTBD1	0.25262234061810934	0.6065762558972843	-0.07141004166966713	
AA868500	0.7086717631489028	0.8844687572647206	0.026512553390938998	
ITGA2	0.06694479283695004	0.3752367700391344	-0.14432300651737673	

To view the results:

In the Statistical Analysis tab the user will be able to view the Statistical Analysis Results (the top 20 features), the Heatmaps, the Volcano plots, the significant molecules, the molecular quantification (MQ) files and he'll be able to download the Beanplots and all the resulting files. Finally, in the last tab the run information will be displayed.

General Predictive Model Creation

The third step is the General Predictive Model Creation. This step is also mandatory and allows users to train their own predictors using the biomarkers dataset, the phenotypic annotation and the parameters that they selected.

Predictor Goals Predictor Goals Selected Features Minimization 2. Classifier's Accuracy 3. F1 score 4. F2 score 5. Classifier's Precision 1 0 10 0 1 0 1 0 2. Classifier's Accuracy 3. F1 score 4. F2 score 5. Classifier's Precision 1 0 10 0 1 0 3. Classifier's Recall 7. Classifier's ROC AUC 8. Model Complexity Minimization 9. Manhattan Distance 1 0 1 0 1 0 1 0 dvanced Options Multiobjective Optimization Framework Parameters opulation Size: Arithmetic Crossover Probability: Mutation Probability: Mutation Probability:	OTwo-Cla	SS	ORegression		Multi-Class
Selected Features finimization 2. Classifier's Accuracy 3. F1 score 4. F2 score 5. Classifier's Precision 1 10 10 10 1 1 1 Classifier's Recall 7. Classifier's ROC AUC 8. Model Complexity Minimization 9. Manhattan Distance 1			Predictor Goals	0	
1 10 10 1	1. Selected Features Minimization	2. Classifier's Accuracy	3. F1 score	4. F2 score	5. Classifier's Precision
6. Classifier's Recall 7. Classifier's ROC AUC 8. Model Complexity Minimization 9. Manhattan Distance 1 <t< td=""><td>1 🗘</td><td>10 🗘</td><td>10 🗘</td><td>1 🗘</td><td>1</td></t<>	1 🗘	10 🗘	10 🗘	1 🗘	1
1 1 1 Advanced Options Multiobjective Optimization Framework Parameters Population Size: Arithmetic Crossover Probability: Mutation Probability:	6. Classifier's Recall	7. Classifier's ROC AUC	8 Model Complexi	b. Salutining tion	a second s
dvanced Options Multiobjective Optimization Framework Parameters Doulation Size:			o. Model Complexi	ty Minimization	9. Manhattan Distance
opulation Size: Arithmetic Crossover Probability: Mutation Probability:	1	1 🗘			9. Mannattan Distance
	1 🗘	1 D Multiobje	ective Optimization F	amework Parameters	9. Mannattan Distance
Generations: 100 Image: 100 Ima	1 \$ Advanced Options Population Size: 50	1 🗘 Multiobje Arithmetic Crossov	ective Optimization F /er Probability:	ramework Parameters Mutation Pr	obability: 0.1

The user chooses the kind of prediction problem he has at hand. Later, he can alter the weights of the predictor goals. It is advisable to use the default values. The higher the weight, the more significant the goal.

Finally, the user can alter the multi-objective optimization framework parameters at the Advanced Options. Those are the population size, the number of generations, the arithmetic crossover probability, the two point crossover probability, the mutation probability and the number of folds k for the cross validation.

Network-based Predictive Model

To view the results:

reprocessing	Full Predictive Model	Full Model Testing	Statistical Analysis	Differential Expression Predictive Model	Differential Expression Model Testing	Network An
letwork-based I	Model Testing miRNA	Target Prediction E	nrichment Analysis			
assification P	Performance					
Cross validatio	on accuracy: 74.96 %					
Cross validatio	on F1 score: 70.68 %					
Cross validatio	on Precision: 73.27 %					
Cross validatio	on Recall: 74.96 %					
Cross validatio	on F2 score: 74.62 %					
Cross validatio	on Manhattan Distance: (0.75				
Training accur	acy: 100.00 %					
Training F1 sco	ore: 100.00 %					
Training Precis	sion: 100.00 %					
Training Recal	II: 100.00 %					
Training F2 sco	ore: 100.00 %					
Training Manha	attan Distance: 1.00					
odel Complex	aty					
Nodels						

Model 1 - Number of Random Forest Trees: 52 Model 2 - Number of Random Forest Trees: 35 Model 3 - Number of Random Forest Trees: 35 Model 4 - Number of Random Forest Trees: 52 Model 5 - Number of Random Forest Trees: 52 Model 6 - Number of Support Vectors: 64 Model 7 - Number of Random Forest Trees: 35 Model 8 - Number of Random Forest Trees: 35 Madel 0 Number of Dendem Ecreet Trees: 64

Selected Inputs

ARMC7, MBOAT7, TFIP11, HTR3A, NDUFV2, KMT2E, TMEM126A, MIR1247, RNASE1, BCO31588, CMC25, LINC00926, BI603728, 236923_x_at, CTBP1-AS2, GHDC, MED19, NXNL1, Clorf116, A1264671, FBDC1, SNHG3, AA700650, TMEM39B, UBC, MRPL14, RPS5, AL079289, LINC00445, LOC101928422, CCNB1, TMEM212, AL542578, RACGA P1, 207371_at, LOC102723831, DNA12, ARGLU1, AL353942, SF1, AA883820, STARD7, HNRNPK, INSRR, HNF1A, C7orf25, FROKR2, 242436_at, LINC00942, SH3BP1, OVGP1, LOC101927 710, SLC3GAL, LINC00607, PHKGL, SNTG2, AA012953, NUSAPI, 242174_at, LOC102723927, PRRG4, PEMIM, RGL4, MPZ, FAM219A, AU145280, BQ719879, TTK, FXYDI, A1703397, RPGRI P1, PPPIR27, AW293239, JAKMIP3, TMEM35B, BAGI, AKR7A2, DISC1, LINC00886, HSPA4, AF318321, 230663_at, LINC00939, LINC01192, PDE2A, ADAR, KITLG, AW628168, SH2DIA, ZN F445, FTL, AK093193, CXCL8, TEX30, CCNE2, BE468039, A1417657, WDR4, LOC100507506, CDK2, AF086093, COL7A1, BIRC7, LINC01304, AKNA, OSBPL2, IL34, GNB2, CD37, FEXLI3, P LPPR2, KIAA1324L, MIR4746, EIF3G, CHUK, HFE, N39314, AF086066, TEKT5, TOP2A, ABHD14B, AI741419, DDX51, BF930294, MACROD2, GINS1, CYP2F1, GSX1, FCER2, AGO2, PITPNN2, NRSN2, PARVG, ITGAM, OPTN, IOCH-

nable_pracks_listance_interpretation = nable_pracks = nable_p

REA_CONKIG3_CCL24, SDCCA69, FKHD1, FLEC, FLJ41170, ABCA179, ULBP3, BC009084, USP54, LOC100506664, LOC101060275, 225714___ar, FCXRED1, CAFN1, AA724952, LINC0026 5, PLEP3, TLE2, RFTM1, 229329__at, CLARCA, SIVAI, CSEA, MOR64, CSENPC2, GREAT, 221117_at, AX652267, KCK02, TMEND009, MGATE4, AAG57437, AADMTSL4, AXL, TEX2, RGFL, COCC 144A, MSS51, SF3A3, COPS3, 230346_x_at, ENF40, EMC2, SACN1L, NLRC4, CDC42BFB, ADGRB1, HIST1H2BB, AI740763, XIAP, AP3M2, EBTB46, LOC728392, WTH3DI, CEMP1, MIEF2, EV FL, AL833053, R47946, LOC101928682, AK026967, AVII, LOC101927490, A1803806, Dbp1c2, AS86, HXD-822, WYOLA, GNRG, ABCE9, FOLTO23, NUTRA6, 242815, <u>x</u>, at, AM615179, ADAM39, EVB3, AM298101, AL134451, BTBD7, DGCR14, NCF1C, SLC22A15, CST11, ABCC6F1, AI126321, NUDC03 , MEFB12, BF507371, BF445149, SR0N, PF6F3, LINC00174, NUCKR1, AT820991, SR1, SR666, BE21911, AA805239, LOC389780, MARVELD2, SPATAL3, AWTIN, TEX10, CKPRG3, FAM151 A, TUBA4B, FRKX, MED5, WT1, BC42569, AW293456, DOC2A, DEFB1068, X72882, UCHL3, AL832732, AA001390, ZMYND11, AD03, KIAA1586, AA772874, TREML3P, 220450_at, FRRC2B, C N079, CÓC1747, ANT, GLRAZ, MEF921, MGF, DAFC4, DGF, LOC101929718, 216497_at, BF510844, URT1, SBMA37, WW33, ELK1, MH3, GX015, MT101877, FUS1, TEM22, AA6822C5, XR 648843, TLR9, DUSL, LINC00355, KCNJ8, NR3C2, PIEZ02, NFE2L1, CDC16, ADAM33, AWA67070, FAM206A, A1861840, EP300, SNORD73A, TMEM41A, AF131767, ELMOD2, COX6A1P 1, NNBF, GGNRD, LBYC7 1, NDNF, GSDMD, LBX2-

1, NURF, SOLNU, LBD2-AS1, TXNLF, LOCLOOSO7006, AW367380, RPL7, 242256_x_at, LOC100652777, MRGPRX2, AI869532, ALKBH7, AW268162, 1553354_a_at, IFT20, NACAD, ABCB10, N36400, HOXA5, OSBP XIAA0339L, C17off64, A1911163, 234413_at, ARHGER19, AK021486, LOC100131170, W58344, HMGAL, KLK2, ATAD5, DGKA, SNORD35B, AA707317, 243202_at, BC036639, DNAH9, RT N2, AI963959, TMEM44-AS1, GABRR2, DUSP26, ATP2B1, MAP3K3, ELK2AP, AI921894, ZNF106, PTPRA, CCDC167, MIR6859-

1, BC001743, HUS1, IFIT2, AF116671, TRFC2, ZDHHC13, 217019_at, STK31, FKRP, TLR3, MMS19, FSMB4, KLHL1, LINC00472, LRRC37A4P, RBMY1J, RORA-AS1, AM517051, FFDNF, MIR452, AB062480, 239373 at, AB228078, BNC1, FURIN, AFTPH, KCTD13, RABIFIF5, GTPEP6, FBLL1, GSM, 221379_at, IF16, ZNF283, AI457965, CFAP52, H SP65, AM450033, BC014996, LARFLB, BF51109, MIEL1, GFR42, AF086044, BC021090, AFCS, AL049443, SCGB3A2, BE222450, CFAP161, PFP4R4, CEP85, PFP1CC, AU146384, SLC19A1 , FFR22, EHD2, ZMI22, OCIAD2, YIFF1, C15240, MRF136, SGSM3, THAF3, SH3GL1P2, LINC-PINT, CRADD, AA477687, AA702963, MBD2, BCL11B, FOXD4, COA6, PNMA6A, DIO30S, ACTA1, POLR3E, CA5B, AW303454, KLHL11, CYP2D6, KDM1B, UCA1, RSPH10B2, GABRG2, BUB1B, A180

PINT, CKADD, AA477687, AA702963, MBD2, BCLIIB, FOXP4, COA6, FNMAGA, DIOJOS, ACTA1, POLBSZ, CASB, AW303454, KLBLI1, CYP20F, KDHIB, UCA1, RSFHIOBZ, GABRGZ, BUBLB, A160 OG16, TOMMS, BACO3, BEGIA, CIZI, SFEN, BOG39091, EFGN, BUEZT, CARH, HFFSA, BEXI, AR022046, CET, FBSAF, APEIIA, ABATI, UCKI, UFKAS, RASSC, LOC720965, CANN3, CHM3B, OUSG 4, TXINC9, AV649275, EROIA, ALDHIAZ, PBK, SFAND5, ZNF304, TMEM70, S8U72, SLC44A3, FLJ30064, RPITAPI0, ELM, SREM5, CENPB, BF224366, ZNF146, DLX3, LOC720445, RTN4IPI, A1620881, AT762446, AK025072, MICAL2, XNF503, MKRA8, OXLD1, AU147360, SH3BGKL, AK093208, STX35, BOO34639, LILBAEL2, KAB27A, AK022801, FENME, IMHB1, LOC101929762, BC027465, DAR12, HOXI, CISTNI, 231466, ZATI, ANGRA8, OXLD1, AU147360, SH3BGKL, AK093208, STX35, BC034639, LILBAEL2, KAB27A, AK022801, FENME, IMHB1, LOC101929762, BC027465, DAR12, HOXI, CISTNI, 231466, SFNTI, SIGLAGCIL, PMEL, IS66875_act, AN067759, ANKRLJ 7, LOC101928284, LINC00305, HBH, NKRF, AK02167, TMEM230, RNA8E 4, AW269743, GABPE1, DFYSL4, RAL0AFE, BFNTI, SIGLBCIL, FWEL, IS66875_act, AN067759, ANKRLJ 7, LOC101928284, LINC00305, HBH, NKRF, AK02167, TMEM230, RNA8E 4, AW269743, GABPE1, DFYSL4, RAL0AFE, BFNTI, SIGLBCIL, FWEL, IS66875_act, AN067759, ANKRLJ 7, LOC101928284, LINC00305, HBH, NKRF, AK02167, TMEM230, RNA8E 4, AW269743, GABPE1, DFYSL4, RAL0AFE, BFNTI, SIGLBCIL, FWEL, IS66875_act, AN067759, ANKRLJ 7, LOC101928284, LINC00305, HBH, NKRF, AK02167, TKEM230, RNA8E 4, AW269743, GABPE1, DFYSL4, RAL0AFE, BFNTI, ZIAYE3, ALS02401, FAN29A, CXOFT51B, ARX82A, AK084, LINC01305, HBH, SIGLAFA, THA12, AK553, MARA3, NKN13, NFRE3, BS334, BKALI, TNA12, 24X9261, BFNA29A, CXOFT51B, ARX26A, CXOFT51B, AR26510, FRE327, LOC101930595, MRF63, UTT11, THYN1, MKF86, AF337 72, HOG9, EFB4112, LOC10996579, ADAMTSL3, ADAM3A, SNX11, AF222858, TMEM107, FDS5B, MIR4657, VANGL2, DFPA5, 243078_a, MIR365, ACTR3C, TYR, RHBD3, SOX30, NAGAA4

ISOC1, YPEL3, RPS24, RECK, RBM15, HID1, ZNF816

2NF321P,AF187554,BET1L,PNMA3,ZP2,AK026701,TUBB4B,ARHGAP6,AI733177,RASA3,PRDM12,AF090925,NMRAL1P1,TINM13,UNC5A,AQP12B,C7orf43,AV736725,AIP,AI7987 24, UBAP2L, PAPLN, BE044484, AW172407, LINC00588, LOC100133920, SNF8, PQI C26,1556333_at,E 016176,ASMTL,237424 at,AI469935,LING C21. BK022067 5,AI733457,SFMBT1,TMEM2

AS1, TFAP4, 240896 at, HECM2, AI017540, LOC102724312, RBBP5, C5orf66, CENPH, RAD54B, IFITM3, GUCY2D, BC041050, SEPN1, RPL38, HRG, BC035326, 244489 at, PLEKHA6, RAB 30AP1,AL831920,EHOT2,IQCF5,SFF62,IFNA5,FET100,SEHIL,OFN5,ATG16L1,AI457449,AL043143,LOCI01928510,AW779654,MRPL21,FOLH1,MET2A,KLHDC9,AI075053,VSTM 4,AT022850,TAL1,228586_at,SLC12A6,AI084064,NUDT19,FABFN1,FWF1-BGLAP,AW45292,KN22254,BB675275,MYO188,RLE5,FOLFOFEF,RHS9,Z28896_at,BE858194,CASD1,IL19,N40199,CLSTN2-AS1,KDF1,PHLDA2,SNX5,LOC100287896,R20660,FRKY,MEIOC,MEX3C,UBL4A,KIF13B,ATG4D,FCA3,MTA1,AI074594,JUNB,NKX2-

5, MRPS17, GNL3, C4orf45, MPL, AP2A1, LOC339685, ACTL9, TSSK3, JPH4, AF339810, BC039410, AW974816, H95280, KLHDC7B, 208144 s at, 1554281 at, CCDC151, EP400, ADORA2 B, A1076370, PRKD2, LENG, LOC100506885, ARL4D, ERGIC2, X84340, PDCD2L, GFRA2, KPNA6, PTFN5, STRA6, PIK3R6, UBXN11, GGH, KIAA.9077, RRM2, AW082221, AK021495, ANXA2P3,

ARO91415,207916_at,ENS2CL,ATAT1_EFRA5-AS1,NSUN4,C22crf29,240654_at,TNNC2,CLEC4F,N23258,AL832887,C6orf118,AJ012498,212883_at,S100A12,MICALL1,ZNF600,C9orf131,GJA1,AV700385,TRAF2,TMEM10 3, TMEM51, LOC100129380, PFP1R36, LTC4S, APC, SYS1, IL36A, FAM210A, AK023800, RNF152, AL050136, BC031975, LOC728805, FAF1, HUWE1, AI821649, 1566268 at, CUL9, CDC42 SE1,C10orf11,NPM1,IFNA14,RASSF4,LOC101060835,AU156181,ZNF831,AW237316,MARS2,FOXO3B,CEP76,TNRC6C

SELFULOFILI, MENI, MENSEA, MOLIULUOUSS, MUISIOLI, MESSI, MESSIS, MENSE, EVONDS, CEFO, INKOG-ASI, EXOSCA, TMBBLO, SGCD, TRIM74, LOCID1927040, Clorf35, LOCI55060, 228549_at, LOC400620, AF147426, LOCID1927929, RSLID1, 243160_at, ZNF362, CC2D2A, AF130093, D ET, AI419968, AI523201, DHTKD1, ZDHEC4, SEFT9, BC041976, FLCL2, BC040306, RANPEI, MIEFI, AI674915, MAI39719, 244047_at, NOUEB8, SZT2, PAXIF1, NSMCE1, TSC2ZD1-AS1, SUPT6H, IF04, LOCID1927379, SLC45A2, HAT1, RNFEFI, LOC81787, CDK5RAF3, ANGFT4, OXSM, MARK1, TMEM184C, SNAFC5, 228156_at, BF508839, GATAD1, BC031957, SUFU, FL

16779, HF9D4B, 1556828_at, D0K7, EGS, GUBE, 24045_at, LOC25547, AIT00766, THOC1, BC013633, FOPT, ROBC, CH17 16779, HF9D4B, 1556828_at, D0K7, EGS, GUBE, 24045_at, LOC25547, AIT00766, THOC1, BC013633, FOPT, ROBC, CH17 36005.1, NFF7, ELGRET, COX60, SRQ1, 208421_at, TFAP2A, MIR4784, LERNA, BC042181, C5orf51, 234454_at, AK024973, AIT33345, BE463783, 1570653_at, LSIC, AI360167, MFF 72, TMC23, REFTC, AN015426, LOC285902, MDBLD, MIR5817, AA010315, SNG9, LOC10422876, LOC10522777, CORA, SFR3, 241217_at, LILRA2, CONT, LEALA2, SNR464, CI7orf6 9, B6403405, AK098724, AF085897, FAM96B, AU150817, TBC1D5, MYH14, C17orf98, BAG6, RRA5, CDCA2, ZNF24, UNG, EHF7, ZOCHC4, SJ55, SNORD18C, BLOC152, 216943_at, BF51121 9, B6403405, AK098724, AF065897, FRM96B, ANL50817, TECLD5, MYH14, C17orf99, BAGG, REAS, COCA2, 2NF24, UNO, FHF7, 2CCHC4, GADS, SNORD18C, BLOC182, 216943, at, BF51121 2, AL355554, PFP1R5B, AM271060, TMEMIT, TIMEMB, SFF, MS72653, AI247365, 216568, <u>at</u>, BR03, CCDC022, 2NF24, UNO, FHF7, 2CCHC4, GADS, SNORD18C, BLOC182, 216943, <u>at</u>, BF51121 2, AL355554, PFP1R5B, AM271060, TMEMIT, TIMEMB, SFF, MS72653, AI247365, 216568, <u>at</u>, BR03, CCDC023, COT, FMF8H21, AI322972, LOC10129741, LONTAPL, LOC1282084, CCC BJ, ARAFL, BET1, SRF54, U90905, HAUS1, BC037412, MIR4640, WTAP, XRC22, BE504838, FRORSDIP, SC16A, VT11A, KIMIA, FUT1, ULK3, ANZO5775, COLGALT2, ZNF467, GLI3, CLR, HS D17B12, FITHNC1, MYZAF, LOC100507194, MAGEC1, A1421677, LDB1, IL10RB, SLC24A1, LOC10020045, FLAD1, 1560905, <u>at</u>, FNNT, INFP5B, AT821694, MDR25, AL728713, SNORD3D, NEA1, MFEDD1, FLXNA3, LINC01466, 242192, <u>at</u>, CCR1, HSD17B1, ACTU7A, TUBE2B, AR705064, LOC1003107564, LOC1027770, FEK, GGCT, PLEGI, FAMILOB, LINC01004, TREC1, PTFG , DCRLD, CLC127, MS4A2, HFCAL4, ESRF1, ATC4A, C10orf10, FAKG, TUBE3, AR705064, LOC102724782, A1760332, RBM45, SUN5, AK026466, AP152, AU148090, FAM86B3F, DEM7B1, PCDHGC4 , DCAKD, CloC127, MS4A2, HFCAL4, ESRF1, ATC4A, C10orf10, FAKG, TUBE3, FROTSO64, LOC102724782, A1760332, RBM45, SUN5, AK026466, AP152, AU148090, FAM86B3F, DEM7B1, PCDHGC4 , DCAKD, CloC127, MS4A2, HFCAL4, ESRF1, ATC4A, C10orf10, FAKG, TUBE3, FROTSMEN, FMX2-CTIND1, AA648962, FALA, MURC, TAF12, LINC01622, 238566 at, LINC00427, C20rf76, UBE2C, A1138418, DDX49, AF007143, STEAP3, BE066500, LOC105370629, SC02, AK000106, M S22, S81578, J216421, at, GRB10, AR22140, BC02815, W6141, AD03-AS1, GF72F77, STL8, SFTEM7, WRO, DE64710, H27614, LIF20, H27614, LIF200282, AL162010, A8814006, ABH01F, AX72, 220862, at L.TMEM58, A1280131, LOC101928521, NDUFA7, ZNF646, LIX

as1, gTf21F7, sT18, sFTBN2, mro, BF847120, H27618, LINC00282, AL162010, Aa814006, ARHgDIB, AKT2, 220862_s_at, TMEM258, A1280131, LOC101928521, NDUFA7, ZNF646, LNX 2,H07100,BCL7C,NSUN2,AV659223,MIR205

In the Full Predictive Model tab the user will be able to view the classification (or regression) performance of the cross validation and of the training set. For the two-class prediction problem the user will be able to see the accuracy, sensitivity, specificity, fl score, f2 score, ROC AUC score. For the multi-class prediction problem the user will be able to see the accuracy, f1 score, f2 score, precision, recall and Manhattan distance and for the regression prediction problem the user will be able to view the root mean square error, the relative absolute error, the root relative squared error, the R2 (coefficient of determination) regression score, the explained variance score and the Spearman Correlation.

Additionally, the complexity of every model, which is the total number of support vector machines and the number of trees for RandomForest and also, the average and the best performance of the trained model are being displayed.

Differential Expression Predictive Model Results:

Preprocessing Full Predictive Model Full Model Testing Statistical Analysis	Differential Expression Predictive Model	Differential Expression Model Testing	Network Analysis	Network-based Predictive Model
Network-based Model Testing miRNA Target Prediction Enrichment Analysis				
Classification Performance				
Cross validation accuracy: 48.48 %				
Cross validation F1 score: 47.52 %				
Cross validation Precision: 50.47 %				
Cross validation Recall: 48.48 %				
Cross validation F2 score: 48.87 %				
Cross validation Manhattan Distance: 0.48				
Training accuracy: 67.19 %				
Training F1 score: 65.95 %				
Training Precision: 69.45 %				
Training Recall: 67.19 %				
Training F2 score: 67.63 %				
Training Manhattan Distance: 0.67				
Model Complexity				
Models				
Model 1 - Number of Support Vectors: 55				
Model 2 - Number of Support Vectors: 55				
Selected Inputs				
ARMC7				

At the Differential Expression Predictive Model tab you can view the same results as at the Full Predictive Model tab. The difference between them is the input to this same step. For the Differential Expression prediction step the input is original dataset with only the significant biomarkers selected.

Network-based Predictive Model Results:

Preprocessing Full Predictive Model Full Model Testing Statistical Analysis Differential Expression Model Testing Network-based Predictive Model Network-based Model Testing mRNA Target Prediction Enrichment Analysis Inferential Expression Model Testing Network-based Predictive Model Classification Performance Enrichment Analysis Enrichment Analysis Enrichment Analysis Cross validation Precision: 75.1 % Enrichment Statistication Precision: 65.88 % Enrichment Statistication Precision: 65.88 % Cross validation Precision: 98.42 % Training Recall: 98.44 % Training Recall: 98.44 % Enrichment Statistication Precision: 98.45 % Model Complexity Under Complexity Enrichment 20.88 Enrichment 20.88 Enrichment 20.88
Network-based Model Testing mRNA Target Prediction Enchment Analysis
Classification Performance Cross validation accuracy: 68.98 % Cross validation Precision: 67.51 % Cross validation Precision: 67.51 % Cross validation Precision: 67.51 % Cross validation Real: 68.98 % Cross validation Rp2 score: 68.68 % Cross validation Mahnatan Distance: 0.69 Training Precision: 68.42 % Training Precision: 68.49 % Training Recal: 98.44 % Training Recal: 98.44 % Training Recal: 98.45 % Training Manhatan Distance: 0.98
Classification Performance Cross validation accuracy: 88.98 % Cross validation F1 score: 65.44 % Cross validation Recal: 88.98 % Cross validation Recal: 88.98 % Cross validation f2 score: 88.68 % Cross validation Manhattan Distance: 0.69 Training F1 score: 98.42 % Training F1 score: 98.42 % Training F2 score: 98.45 % Training F2 score: 98.45 % Training F2 score: 98.45 % Model Complexity
Classification Performance Cross validation accuracy: 68.98 % Cross validation Priscore: 65.44 % Cross validation Precision: 67.51 % Cross validation Real: 68.98 % Cross validation RF score: 68.68 % Cross validation Manhattan Distance: 0.69 Training F accuracy: 98.44 % Training Precision: 98.42 % Training Precision: 98.45 % Training Recal: 88.45 % Training Recal: 98.45 % Model Complexity
Cross validation accuracy: 68.98 % Cross validation F1 score: 65.44 % Cross validation Precision: 67.51 % Cross validation Precision: 67.51 % Cross validation Recall: 68.98 % Cross validation Precision: 68.68 % Cross validation Manhattan Distance: 0.69 Training accuracy: 98.44 % Training F1 score: 98.42 % Training Precision: 98.49 % Training F2 score: 98.45 % Training F2 score: 98.45 % Model Complexity
Cross validation F1 score: 65.44 % Cross validation Precision: 67.51 % Cross validation Recall: 68.98 % Cross validation F2 score: 68.68 % Cross validation Manhattan Distance: 0.69 Training accuracy: 98.44 % Training F1 score: 98.49 % Training Frecision: 98.49 % Training F2 score: 98.45 % Training F2 score: 98.45 % Model Complexity
Cross validation Precision: 67.51 % Cross validation Recall: 68.98 % Cross validation F2 score: 68.68 % Cross validation Manhattan Distance: 0.69 Training F4 score: 98.44 % Training Frecision: 98.49 % Training Frecision: 98.49 % Training F2 score: 98.45 % Training F2 score: 98.45 % Model Complexity
Cross validation Recall: 08.98 % Cross validation F2 score: 08.68 % Cross validation Manhattan Distance: 0.69 Training F4 score: 08.44 % Training Frecision: 98.42 % Training Frecision: 98.49 % Training F2 score: 98.45 % Training F2 score: 98.45 % Model Complexity
Cross validation F2 score: 68.68 % Cross validation Manhattan Distance: 0.69 Training accuracy: 98.44 % Training F1 score: 98.42 % Training Precision: 98.49 % Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Cross validation Manhattan Distance: 0.69 Training accuracy: 98.44 % Training F1 score: 98.42 % Training Precision: 98.49 % Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training accuracy: 98.44 % Training F1 score: 98.42 % Training Precision: 98.49 % Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training F1 score: 98.42 % Training Precision: 98.49 % Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training Precision: 98.49 % Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training Recall: 98.44 % Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training F2 score: 98.45 % Training Manhattan Distance: 0.98 Model Complexity
Training Manhattan Distance: 0.98 Model Complexity
Model Complexity
Model Complexity
The subject of the su
Models
Model 1 - Number of Random Forest Trees: 10
Model 2 - Number of Random Forest Trees: 13
Model 3 - Number of Random Forest Trees: 10
Model 4 - Number of Random Forest Trees: 10
Model 5 - Number of Random Forest Trees: 10
Model 6 - Number of Random Forest Trees: 10
Model 7 - Number of Random Forest Trees: 19
Model 8 - Number of Random Forest Trees: 19
Model 9 - Number of Random Forest Trees: 19

At the Network-Based Predictive Model tab you can view the same results as at the Full Predictive Model tab. The difference between them is the input to this same step. For the Network-Based prediction step the inputs are the original dataset with only the significant biomarkers and the output of the Network Comparison

Network Analysis

The fourth step is Network Analysis. This step is optional and it consists of five steps:

- Bionet Create Gene Co-expression Networks.
- Biological Network Analysis
- Network Comparison Biomarkers
- Interact Enrichment Analysis
- Bionets Clustering

At each step, the default value for every parameter is selected. These values can be configured manually by the user.

4. Network Analysis (Optional)	4. Network Analysis (Optional)							
A If you want to do Biological Network Analysis or/and Network Comparison Biomarker	▲ If you want to do Biological Network Analysis or/and Network Comparison Biomarkers or/ and Interact Enrichment Analysis or/and Bionets Clustering, then you should also do gene Co-expression Network Creation.							
Do you want to do network analysis? 🗹								
Bionets Create Gene Co-expression networks	Gene Co-expression Network Creation							
Biological Network Analysis	Method: Pearson V							
Network Comparison Biomarkers	Interval of trust: 99% 🗸							
Interact Enrichment Analysis	Filtering parameter minimum variance: 0							
Bionets Clustering	Filtering parameter minimum average logarithmized expression: 0							

To view the results:

In the Network Analysis tab you can view the five different tabs for each step of the

Preprocessing Full Predictive Model Full Model Testing Statis	stical Analysis Differen	ntial Expression Predictive Model	Differential Expression Model Testing	Network Analysis	Network-based Predictive Model
Network-based Model Testing miRNA Target Prediction Enrichmen	nt Analysis				
Co-expression Networks Network Analysis Network Biomarkers	Enrichment Analysis	Clustering			
Gene Co-expression Network Filename	Threshold	Download			
mq_coexpnet_0.5_23_0.tsv	0.5	🛃 File			
mq_coexpnet_0.5_23_2.tsv	0.5	🛃 File			
mq_coexpnet_0.5_23_1.tsv	0.5	🛃 File			

Network Analysis steps.

Gene co-expression network creation

Gene expression files, either uploaded directly by the users or generated through soft files parsing, can be used to generate weighted gene co-expression networks. Experienced users can tune the parameters of the algorithms used for this step and select the most suitable algorithm for them. Three options are offered:

- **Pearson Correlation:** This method adds an edge to a network if the Pearson correlation of the nodes adjacent to the edge exceeds a threshold.
- **Mutual information:** This method adds an edge to a network if the mutual information among the expression profiles of the two nodes of the edge exceeds a threshold.
- **Spearman Correlation:** This method adds an edge to a network if the Spearman correlation of the nodes adjacent to the edge exceeds a threshold.

The thresholds for adding edges are dynamically generated to alleviate problems occurring by using the same threshold for all nodes. In particular, for a single node Pearson correlations or Mutual Information or Spearman correlations between this node and all other nodes are calculated. Assuming that the Pearson correlation/Mutual Information/Spearman correlation values between a single node and all other nodes follow a normal distribution, then the threshold for adding edges is selected to be in a predefined a confidence interval (90%, 95% or 99%). The confidence interval is predefined at 99% but the users can change this value in order to get denser or sparser networks. In order to force nodes to have a minimum number of edges users can also specify a minimum value for the threshold of adding an edge in the network. Experienced users can further filter nodes from the network by altering the minimum expression variance threshold and the minimum average of the logarithmized expression values threshold.

To view the results:

In the Co-expression Networks tab you can view and download the created networks.

Preprocessing Full Predictive Model Full Model Testing Statistica	I Analysis Differential E	xpression Predictive Model	Differential Expression Model Testing	Network Analysis	Network-based Predictive Model
Network-based Model Testing miRNA Target Prediction Enrichment A	nalysis				
Co-expression Networks Network Analysis Network Biomarkers	Enrichment Analysis Clu	ustering			
Gene Co-expression Network Filename	Threshold	Download			
mq_coexpnet_0.5_23_0.tsv	0.5	🛃 File			
mq_coexpnet_0.5_23_2.tsv	0.5	🛃 File			
mq_coexpnet_0.5_23_1.tsv	0.5	🛃 File			
Network Comparison Biomarkers	Interval of Trust (Most	t Significant Nodes): 95%	•		
Interact Enrichment Analysis	Method (Most Signific	ant Edges): Edge weight	•		
Bionets Clustering	- (
	Interval of Trust (Most	t Significant Edges): 95% :	\$		

Biological Network Analysis

In order to analyze the biological network, the users can tune the following parameters if they are experienced:

- Method for selecting significant nodes (Pagerank (default), Clustering Coefficient, degree centrality])
- Confidence interval for locating significant nodes
- Method for selecting significant edges (Edge weight (default), Inbetweeness centrality)
- Confidence interval for locating significant edges

To view the results:

Four new tabs are generated, General Network Analysis, Node/Edges Metrics, Significant Nodes/Edges and Network Topology.

At the General Network Metrics tab users can view the most significant network metrics (clustering coefficient, Estrada index and so on) and compare the degree distribution of their network with a random network's power law distribution. Information in this tab is not available for networks with more than 225000 edges.

At the Node/Edges Metrics tab users can find the metrics for all nodes (degree centrality, clustering coefficient and pagerank centrality) and edges (edge weight and in betweenness centrality) of your network.

Co. expression Networks	Natwork Applyzie Natwork Biomarkers Enricht	aant Analysis Clustering				
	Network Analysis					
General Network Metrics	Nodes/Edges Metrics Significant Nodes/Edges	Network Topology				
Node Metrics						
Browse among metrics						J. Node Metrics
Mada	ti Degree Centrality		Objectoring Coefficient		- Degeranti Centrality	
Node			Clustering Coefficient			
ANKRD17	0.00022341376228775692		0		0.00010364841101858703	
APC	0.00044682752457551384		0		0.00013748721716292053	
RANBP1	0.0013404825737265416		0.008977556109725686		0.0002606384630344983	
HNF1A	0.0011170688114387846		0.005319148936170213		0.00024345433958942114	
MSH2	0.00044682752457551384		0		0.00031837035861361624	
PRKCZ	0.00022341376228775692		0		0.00019801492562043118	
CCNB1	0.00044682752457551384		0.0		0.00023821496586395212	
CDK1	0.00044682752457551384		0		0.0002643453226221462	
SEPN1	0.006478999106344951		0.030863545777296785		0.0004979254986518572	
ELK1	0.00022341376228775692		0		5.1240886233946666e-05	
LOC100653049	0.010947274352100089		0.4298614323351367		0.0002949315974561881	
Co-expression Networks	Network Analysis Network Biomarkers Enrich	ment Analysis Clustering				
0 2 1 General Network Metrics	Nodes/Edges Metrics Significant Nodes/Edges	Network Topology				
Most Significant Nodes						
Browse among metrics						Most Significant Nados Matrice
						Most Significant Nodes Metrics
Node	1 Degree Centrality			Pagerank Centrality	î↓ P-value	11
LOC100130370	0.013404825737265416	0.006368880239310772		0.0019119370202301674	5.139867197997187e	-25
SARDH	0.012064343163538873	0.006093109565855748		0.0017764936692936813	1.8578161929389055	2-21
HOXC10	0.02033065236818588	0.023576114267675145		0.0013400867999560791	5.695042202916822e	-12
WBP2	0.022117962466487937	0.02479571364777837		0.0012866514545128629	5.134090812430496e	-11
HNRNPUL1	0.021447721179624665	0.023306981599252832		0.0012729840938720332	8.861616262259541e	-11
MAZ	0.021447721179624665	0.024041884981079963		0.001268088902179435	1.0757286747437055	2-10
AI364876	0.007819481680071492	0.009668267675385114		0.0012634502589654794	1.291615427448428e	-10
SF3A2	0.01876675603217158	0.02588632169279417		0.0012229745725881292	6.164563550787137e	-10
FBX044	0.007596067917783735	0.008500942114718898		0.0011788655361056723	3.1650058690534606	2-09
CENPB	0.019660411081322608	0.026770813755190213		0.0011581736569499508	6.655405930659457e	-09
PRKCSH	0.020107238605898123	0.026396007419605797		0.0011421515804376137	1.1709248358259013	2-08

At the Significant Nodes/Edges tab users can access two tables including the significant nodes and edges. For each node and edge, the respective metrics and the p-values of their significance a. Significant edges are not available for networks with more than 225000 edges.

The Network Topology tab offers an interactive visual representation of the biological network. When networks have more than 10,000 edges, a haircut filter is applied before the visualization of the network. If the haircut filter cannot reduce the number of edges below 10,000 edges then no network visualization is provided. Networks' visualization is based on the Cytoscape plugin and it provides an interactive graphical interface. Users can retrieve information about clicked nodes and edges, export the image in different formats (a PNG, SVG, JPG), decrease opacity on mouseover and view the network using different visualization layouts (force-directed, circle or radial).

Network Comparison Biomarkers

4. Network Analysis (Optional)	
A If you want to do Biological Network Analysis or/and Network Comparison Biomarkers	s or/ and Interact Enrichment Analysis or/and Bionets Clustering, then you should also do gene Co-expression Network Creation.
Do you want to do network analysis?	
Bionets Create Gene Co-expression networks	Network Comparison Biomarkers
Biological Network Analysis	Confidence interval: 90% ◆
Network Comparison Biomarkers	Method: Page-rank ¢
Interact Enrichment Analysis	
Bionets Clustering	

It is widely accepted lately that differential expression biomarkers are large in numbers, contain a large number of false positives and mainly depict the outcome of disease mechanism and not its cause. For this reason, the current trend in biomarker discovery is to detect biomarkers by comparing biological networks. Biological networks are slightly altered in different biological conditions and changes on them are associated with the causes of disease mechanisms with high probability.

When having two biological networks of different conditions, users can use them to predict network biomarkers with an InSyBio's novel methodology. In particular, a certain network metric is selected and InSyBio BioNets attempts to detect network's nodes with significantly altered values for this network metric. Thus, our approach finds nodes whose role in the network has significantly changed among the different conditions. Experienced users can select a specific network metric among the following ones:

- Degree Centrality
- Clustering Coefficient
- Pagerank method

Pagerank method is the default one. This method triggers random walkers starting from each node. Significant nodes are collecting more information from the diffused quantities of the random walkers over time. Experienced users can also select the confidence interval for tuning the threshold of assigning a node as biomarker. Higher confidence interval values lead to the extraction of more compact sets of biomarkers.

To view the results	То	view	the	results	•
---------------------	----	------	-----	---------	---

Co-	expression Networ	ks Network Analysis	Network Biomarkers	Enrichment Analysis Clustering				
0 vs	2 0 vs 1	2 vs 1						
	Gene Expression	Confidence Score	Centrality metric in control network	Centrality metric in examined phenotype/condition network	Difference in centrality metric between examined phenotype and control networks	Database	Related Uniprot ID	Link to External Databases
	MAPK8IP3	1.0	0.000267799491643915	0.0006987786201103868	0.00018542274368304752	Gene Symbols	Q9UPT6, E9PFH7, B7ZMF3, H3BN91, G1UI24	Genecards OMIM
	SLC12A4	0.9537835058549945	0.00030367511578434115	0.00048087304174944607	0.0002426171312549065	Gene Symbols	Q9UP95	Genecards OMIM
	LOC100130370	0.9374170716884797	0.0007945623004465563	0.000372258856712521	9.908005172473156e-05			-
	BLZF1	0.9076678045361469	0.00022336385972749609	0.0016772649565850546	6.118801026087902e-05	Gene Symbols	Q9H2G9	Genecards OMIM
	SPTBN4	0.8854177551403185	0.0003936722558950883	0.000261953139665185	0.0001216436929481671	Gene Symbols	Q9H254	Genecards OMIM
	LRRC43	0.870937071331673	0.00010364841101858703	0.00011822655006919568	0.00022336385972749609	Gene Symbols	бвизөә	Genecards OMIM
	GJC2	0.8674068116674456	0.00025883302930618403	0.00011191436168375295	5.288213768444955e-05	Gene Symbols	Q5T442	Genecards OMIM
	TNK2	0.8435961158238391	0.0003960090054490455	0.0005797886505628168	0.00020149103364900262	Gene Symbols	Q07912, C9J1X3, H7C412, C9JDG3, H0Y5H7, F8WER3, H7C343, H7BZM8, H7BZZ3, C9JIR5	Genecards OMIM

At the Network Biomarkers tab the results are presented in a table with Gene, Confidence Score, Centrality metric in control network, Centrality metric in examined phenotype/condition network, Difference in centrality metric between examined phenotype and control networks, Database, Related Uniprot ID, Link to External Databases columns. Clicking a Gene Expression field the user can view diseases associated with that gene. Clicking a Related Uniprot ID field the user can view the related protein in our InSyBio Interact tool. Clicking a Link to External Databases the user can view the gene in external databases.

Interact Enrichment Analysis

4. Network Analysis (Optional)	
A If you want to do Biological Network Analysis or/and Network Comparison Biomarkers	s or/ and Interact Enrichment Analysis or/and Bionets Clustering, then you should also do gene Co-expression Network Creation.
Do you want to do network analysis?	
Bionets Create Gene Co-expression networks	Interact Enrichment Analysis
Biological Network Analysis	Use any known identifier for denoting your biomarkers: Uniprot IDs, gene symbols, RefSeq_id and so on.
Network Comparison Biomarkers	Mixed identifiers are not supported!
Interact Enrichment Analysis	Pvalue threshold ² : 0.05
Bionets Clustering	

You can perform enrichment analysis with hypergeometric distribution on a given a list of proteins, genes or transcripts and produce a list of GO terms associated with the list, with their term specificity and score in the distribution. You can also provide your custom annotation, term, term type and functional annotation of molecules files, that will be appended to the default files to perform the enrichment. You can define a pvalue threshold for the biomarker to GO terms association output.

To view the results:

Network-bas	sed Model Testing m	iRNA Target Prediction	Enrichment A	nalysis	
Network Bio	markers Differential	Expression Biomarkers			
GO Term	GO Term's Type	GO Term's Name	GO Term's Specificity	Enrichment Score	Associated Unitprot ids
GO:0034260	biological:process	negative regulation of GTPase activity	8	0.025706828955476498	Q07912
GO:0035268	biological:process	protein mannosylation	8	0.01858060086315525	060762,096E22
GO:0005881	cellular:component	cytoplasmic microtubule	6	0.01400675073029111	P30622
GO:0005643	cellular:component	nuclear pore	5	0.0018448455849128349	Q9UND3
GO:0006417	biological:process	regulation of translation	7	0.009660680011730018	Q96EY7
GO:0006461	biological:process	protein complex assembly	5	0.012340289698257073	P11047, P29590, P63027, Q15334, Q9BMN4, Q9UQR1, Q9Y566
GO:0016311	biological:process	dephosphorylation	6	0.020318205512264802	P09467,P35813,Q9BY84
GO:0045087	biological:process	innate immune response	4	1.575854940325369e-08	043914,094817,P02745,P02747,P06241,P09871,P12931,P29598,Q07912,Q13263,Q81WZ3
GO:0019899	molecular:function	enzyme binding	4	0.0003491810118052967	000267,014975,P00167,P06241,P12931,P16157,P17535,P23378,P26368,P42224,P43246,P46108,Q03135,Q5XKE5,Q7L592,Q92802,Q99638,Q9BUJ2,Q9C0C2,Q9H269
GO:0010628	biological:process	positive regulation of gene expression	7	6.961521611935466e-06	O60895,P01127,P05549,P28906,Q03135,Q9P1Z2,Q9UK33,Q9Y6Q9
GO:0000049	molecular:function	tRNA binding	6	0.04540573670923506	Q9BV44,Q9HD40

At the Enrichment Analysis tab you can view the results that are a list of GO terms, terms type and name, specificity, enrichment score, associated Uniprot ids and input ids.

Bionets Clustering

At this step, you can analyze your Biological Network to extract complexes of similar nodes (i.e protein complexes), Weighted and unweighted Biological Networks.

For the prediction of Biological Network complexes one option is supplied:

4. Network Analysis (Optional)		
Let f you want to do Biological Network Analysis or/and Network Comparison Biomarker	rs or/ and Interact Enrichment	Analysis or/and Bionets Clustering, then you should also do gene Co-expression Network Creation.
Do you want to do network analysis?		
Bionets Create Gene Co-expression networks	Bionets Cluster	
Biological Network Analysis	Select Algorithm:	ClusterONE - Clustering with Overlapping Neighborhood Expansion 🗢
Network Comparison Biomarkers	Algorithm paramete	rs
Interact Enrichment Analysis	Complexes Size Thresh	old: 3
Bionets Clustering	Complexes Density Three	shold: 0.3

Clustering with Overlapping Neighborhood Expansion (ClusterONE).

- Complexes size threshold: (default value 3)
- Complexes density threshold: (default value 0.3)

To view the results:

On averaging Maturalia — Maturali Arabisia	Natural Discussions	Englishment Analysis	Oburtarian	
Co-expression Networks Network Analysis	Network Biomarkers	Enrichment Analysis	Clustering	
0 2 1				
cluster 1				
STAU1, TMEM70, RBM15, AI703397, RBM45, 1	FBCB, FAM86B3P, MRO			
				View Complex
cluster_2				
STAU1, AW205775, TMEM70, RBM15, AI70339	7, FKBP2, LOC105370629)		
				View Complex
				view Complex
cluster 3				
ousio_o				
STAU1, TMEM70, BF510982, RBM15, AI70339	7, RBM45, TBCB, FAM86B	3P		
				View Complex

At the Clustering tab you can view the different network clusters that are computed. You can also visualize them by clicking "View Complex".

E InSyBio Suite - Pig	Visualize Complex .	**SyBio Beta User 🔹 🛡 🕐
Preprocessing Full Predictive Mode Network-based Model Testing miRh Co-expression Networks Network A 0 2		dictive Model
cluster_1 STAU1, TMEM70, RBM15, AI703307	TECH (REMARKED)	
STAU1, AW205775, TMEM70, RBM1	Export Network Layout PNG image Save Visualized Network	
cluster_3 STAU1, TMEM70, BF510982, RBM16	, AI703397, RBM45, TBCB, FAM86B3P View Complex	

ncRNAseq Predict

The fifth step is the ncRNAseq Predict step. This step is also optional and with this step you can computationally predict potential miRNA targets at given Genes or Transcripts and given miRNAs. BLAST is performed in order to find potential target sites, and then the computational intelligent technique, which was applied for the prediction of miRNAs (hybrid combination of Genetic Algorithms and epsilon-SVRs), and 124 informative features are used in order to calculate a prediction score.

For this step:

• Select miRNAs and the Genes you want to search for potential targets by searching in our Database and adding them to the miRNA List and Genes List or add them manually to their Lists and separating them with commas.

5. ncRNAseq Predict (Op	tional)
Do you want to do ncRNASeq t	arget site prediction?
Search miRNA @:	Select mirna Add to list
miRNAs List:	

To view the results:

At the tab miRNA Target Prediction the results are presented on your screen in a browse-able table, with each miRNA and gene pair in a row with their confidence score. By pressing Details at the Actions Column the specific scores between the miRNA and the gene's transcripts can be viewed. If no target sites are found "No targets found!" is presented at the score column. If one or more target sites are found you can view its UTR sequence, with the target sites of the miRNA highlighted. Multiple target sites are marked with green color and unique target sites are marked with light blue.

Testing Multi-biomarker Predictive Analytics Model

The sixth and final step is the Testing Multi-biomarker Predictive Analytics Model step. This step is also optional and allows the users to test the predictors that they have trained in the previous "training" step.

The first input file is the test dataset, which can be preprocessed or not preprocessed. The second input are the testset labels, which is optional. If the user inserts the testset labels then he'll receive as an output along with the predicted labels the performance metrics of the prediction.

It should be noted that the input dataset must have the format of the previous functionalities, that is it should have as rows the features and as columns the samples.

6. Testing Multi-biomarker Predic	tive Analytics Model (Optional)	
Do you want to test Multi-biomarker Pred	dictive Analytics Model? 🗹	
Test set File 🚱		
Title 3:		
Filename 3:		
	Select file from Data Store O Go to Data Store to Upload File	
Test set Labels (Optional)		
Title 4:		
Filename 4:		
	Select file from Data Store S Go to Data Store to Upload File	

At the end, the user should click the Submit Job button to start the job.

Submit Job

To view the results:

At the Full Model Testing tab the user will be getting the following results. He'll view the predicted labels and the performance metrics. For the two class classification problem (two-class, multi-class) he'll view the test set accuracy, specificity, sensitivity, f1 score, f2 score and ROC AUC score. For the multiclass classification problem he'll view the test set accuracy, f1 score, precision, recall, f2 score and Manhattan Distance. For the regression he'll view the testset mean squared error, the test set relative absolute error and the root relative squared error.

How to get InSyBio Pipelines

To request a free one month full (evaluation) version of InSyBio Suite please email us at <u>info@insybio.com</u>.

To purchase InSyBio Interact commercial version 3.0 please contact us at <u>sales@insybio.com</u>.

About Us

InSyBio Ltd is a bioinformatics pioneer company (<u>www.insybio.com</u>) in precision medicine and nutrition, that focuses on developing computational frameworks and tools for the analysis of complex life-science and biological data in order to develop predictive integrated biomarkers (biomarkers of various categories) with increased prognostic and diagnostic aspects for the personalized Healthcare Industry.

InSyBio Suite consists of tools for providing integrated biological information from various sources, while at the same time it is empowered with robust, user-friendly and installation-free bioinformatics tools based on intelligent algorithms and methods.

COPYRIGHT NOTICE

External Publication of InSyBio Ltd - Any InSyBio information that is to be used in advertising, press releases, or promotional materials requires prior written approval from the InSyBio Ltd. A draft of the proposed document should accompany any such request. InSyBio Ltd reserves the right to deny approval of external usage for any reason.

Copyright 2022 InSyBio Ltd. Reproduction without written permission is completely forbidden.